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Abstract
Background: Molecular evolutionary studies of noncoding sequences rely on multiple alignments.
Yet how multiple alignment accuracy varies across sequence types, tree topologies, divergences
and tools, and further how this variation impacts specific inferences, remains unclear.

Results: Here we develop a molecular evolution simulation platform, CisEvolver, with models of
background noncoding and transcription factor binding site evolution, and use simulated alignments
to systematically examine multiple alignment accuracy and its impact on two key molecular
evolutionary inferences: transcription factor binding site conservation and divergence estimation.
We find that the accuracy of multiple alignments is determined almost exclusively by the pairwise
divergence distance of the two most diverged species and that additional species have a negligible
influence on alignment accuracy. Conserved transcription factor binding sites align better than
surrounding noncoding DNA yet are often found to be misaligned at relatively short divergence
distances, such that studies of binding site gain and loss could easily be confounded by alignment
error. Divergence estimates from multiple alignments tend to be overestimated at short
divergence distances but reach a tool specific divergence at which they cease to increase, leading
to underestimation at long divergences. Our most striking finding was that overall alignment
accuracy, binding site alignment accuracy and divergence estimation accuracy vary greatly across
branches in a tree and are most accurate for terminal branches connecting sister taxa and least
accurate for internal branches connecting sub-alignments.

Conclusion: Our results suggest that variation in alignment accuracy can lead to errors in
molecular evolutionary inferences that could be construed as biological variation. These findings
have implications for which species to choose for analyses, what kind of errors would be expected
for a given set of species and how multiple alignment tools and phylogenetic inference methods
might be improved to minimize or control for alignment errors.
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Background
Annotation of cis-regulatory sequences, non-coding RNAs
and other functional noncoding sequences is a major
challenge in molecular genetics today. Whole genome
sequences of closely related species, such as those now
available in mammals, flies, worms, yeast and bacteria,
provide an opportunity for evolutionary analyses to
greatly aid in this effort, but also present new challenges
for sequence analysis [1].

The first step in studying the evolution of noncoding
sequences is alignment. New tools have been developed
for fast and accurate alignment of long stretches of
genomic sequence (reviewed in [2-4]) and benchmarking
studies have begun to address the accuracy of these pair-
wise [5,6] and multiple [7,8] alignment tools under vari-
ous evolutionary scenarios. Knowing the nucleotide-level
accuracy of alignment tools greatly informs decisions
about which tools to use and which species to compare,
but the impact of alignment error on evolutionary studies
of noncoding sequences is only just beginning to be
explored [6,8].

Sophisticated molecular evolution models and tests have
been developed over the last few decades to identify vari-
ous forms of selection and sequence features, yet their
application nearly always assumes a perfect alignment [9].
It is commonly appreciated that highly diverged species
align poorly and therefore are unsuitable for many align-
ment based evolutionary inferences. Thus cautious
researchers tend to study recently diverged species that
align trivially, but which have the potential to not be as
informative as more diverged species. Ideally one would
use the set of species that maximize information for an
acceptable amount of error in an estimate.

Because of the inferential nature of evolutionary studies,
no experiment in extant taxa could generate information
about the true orthology of sequences, so simulations
offer a tractable alternative. Molecular evolution simula-
tions have been used to assess evolutionary analysis meth-
ods, including divergence estimation [10,11] and
phylogeny reconstruction methods [12-15], as well as
protein [16,17] and non-coding alignment accuracy [5-
8,18,19].

Here we present the results from a simulation-based study
assessing the accuracy of multiple alignments and the
effect of alignment accuracy on two fundamental evolu-
tionary inferences: transcription factor binding site con-
servation and divergence distance estimation.

The most frequent noncoding targets of comparative anal-
yses are cis-regulatory DNAs that contain functional bind-
ing sites for transcription factors and thereby control gene

expression [20]. Although transcription-factor binding
sites are generally more conserved than surrounding
sequences [21-34], they have also been observed to be
gained and lost through evolution [35-42]. Precise meas-
urements of binding site conservation, therefore, are
essential for studying their evolutionary dynamics as well
as identifying regulatory regions.

Divergence estimates inform nearly all evolutionary anal-
yses. Accurate measurements of noncoding divergences
are used for many purposes including differentiating func-
tional from non-functional sequences based on constraint
[43-51], showing lineage specific rate changes [52,53] and
as a baseline for comparing other kinds of rates, like bind-
ing site gain and loss [38].

Below we first examine multiple alignment accuracy
across tools, sequence types, trees and divergences. We
show that multiple alignment accuracy is primarily deter-
mined by the pairwise divergence of the two most
diverged species. We next look at alignment accuracy of
transcription factor binding sites. We show that although
they align better than their surrounding noncoding DNA,
they are misaligned at a high enough frequency such that
precise studies of gain and loss events could easily be con-
founded by alignment errors. Finally we look at the
impact multiple alignment accuracy has on divergence
distance estimation. We show that divergences tend to be
overestimated at short distances and cease to increase at a
tool specific maximum divergence, corresponding to the
point at which alignment accuracy reaches its minimum.
We also show that overall alignment accuracy, binding
site alignment accuracy and divergence estimation accu-
racy vary across branches in a tree such that terminal
branches are aligned better than internal branches. Impli-
cations for method development and evolutionary analy-
sis are discussed.

Results
CisEvolver
For the purposes of this study we developed a molecular
evolution simulator, CisEvolver, that incorporates several
known characteristics of noncoding sequences. CisE-
volver takes an ancestral DNA sequence and evolves it
along a mutation guide tree, producing sequences for
which we know the true alignment. The utility of such a
simulation is that the sequences can be re-aligned using
standard alignment tools and the accuracy of the tool
alignment as well as the accuracy of any inference from
the tool alignment can be measured by comparison with
the true alignment. In cases where the error in an infer-
ence is due to both alignment error and error in the infer-
ence method itself, the contribution of alignment error to
the total inference error can be directly measured by com-
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parison of inference from the tool alignment and infer-
ence from the true alignment.

We implemented CisEvolver with two types of sequences,
background genomic sequence and transcription factor
binding sites. Background genomic sequences are evolved
according to the Hasegawa Kashina Yano 1985 (HKY85)
substitution model [54], a Poisson insertion/deletion
(indel) event model and an empirical indel length fre-
quency distribution [55]. Transcription factor binding
sites are evolved according to the Halpern Bruno 1998
(HB98) model of position specific substitution rates
[56,57], which requires the less degenerate positions in a
transcription factor binding site to evolve more slowly
and more specifically according to a position specific
weight matrix [58] (see Methods for more details).

CisEvolver is freely available [59].

Simulations & alignments
Using CisEvolver we simulated a large set of alignments
on which downstream analyses were performed.
Sequences were simulated over a range of total divergence
distances on two, three and four species trees with fixed
topologies and fixed branch length proportions as
depicted in figure 1. The relative branch lengths in these
three topologies were chosen for direct comparisons of
branches within the tree, as discussed below (see Align-
ment Accuracy). Two basic classes of sequences were sim-
ulated representing either 10 kb background genomic
sequences or variable length enhancer sequences. Back-
ground genomic sequences were simulated with uniform
substitution and indel rates. Enhancer sequences were
evolved from 36 experimentally characterized regulatory
regions from Drosophila melanogaster [26,60] containing
the binding sites for eight transcription factors with
known binding specificity: Bicoid, Caudal, Giant, Hunch-
back, Knirps, Kruppel, Tailless and Torso-Response Ele-
ment [60-62]. Binding sites within the enhancers were
evolved using CisEvolver's binding site evolution model
with no gain or loss events and surrounding sequences
were evolved as genomic background with substitutions
and indels (see Methods for more details). One hundred
replicates and 25 replicates for each divergence and tree
topology were generated for background genomic
sequences and each of the 36 enhancers respectively.

All alignments were performed using default parameter
settings for Clustalw [63], Mavid [64], Mlagan [65] and
Blastz/Tba [7,66,67] (see Methods for details). These tools
were chosen based on their usage, availability, speed and
ability to produce collinear multiple alignments of large
genomic regions and were meant to be representative of
algorithms and parameter settings. We note that Blastz/
Tba is a local alignment tool and therefore, unlike the glo-

bal alignment tools, does not always return an alignment.
Finally, although we present the relative performance of
these specific tools, our focus in this study is on the rela-
tionship of their accuracy with evolutionary scenarios and
the inferences that can be made from their alignments.

Alignment accuracy
Using simulated true alignments and tool alignments we
characterized the variation in alignment accuracy across
alignment tools, divergences and trees. Alignment accu-
racy was defined as the fraction of ungapped columns in
a true alignment that were aligned identically in a tool
alignment (see Methods & "sensitivity" in [5]). We exam-
ined many aspects of pairwise and multiple alignment
accuracy and our major observations were:

Mutation Guide TreesFigure 1
Mutation Guide Trees. Simulations were performed on 
two, three and four species trees. Numbers on the branches 
indicate the fraction of the total tree divergence distance on 
each branch.
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i. Alignment accuracy varies across tools and divergences
(figure 2A).

ii. The presence of transcription factor binding sites leads
to higher alignment accuracy (figure 2B).

iii. More species results in better accuracy when compar-
ing trees of equal total divergence but different numbers
of leaves (figure 2C).

iv. The improvement of adding a fourth species is less
than that of adding a third when comparing trees of equal
total divergence but different numbers of leaves (figure
2C).

v. Adding in-group species or out-group species to a pair
of species has an insignificant effect on the alignment
accuracy of the pair (figures 2D, 2E &2F).

In addition to these investigations into alignment accu-
racy across all species in alignments, we also examined the
alignment accuracy for subsets of species within multiple
alignments, attempting to relate the accuracy to the tree
topology. We measured what we call leaf-to-leaf accuracy,
node-to-leaf accuracy and node-to-node accuracy (see
Methods). Leaf-to-leaf accuracy refers to the accuracy of
the alignment of sister taxa (i.e. seq3 to seq4 in the four
species alignments in figure 1), conditioned on the col-
umns being ungapped across all the sequences. Node-to-
leaf accuracy refers to the accuracy of the three species
alignments, conditioned on the columns containing cor-
rect alignments of seq1 to seq2. Node-to-leaf accuracy
therefore only depends on the alignment accuracy of
node1 to seq3. Similarly, node-to-node accuracy refers to
the accuracy of the four species alignments, conditioned
on the columns containing correct alignments of seq1 to
seq2 and seq3 to seq4. Node-to-node accuracy therefore
only depends on the alignment accuracy of node1 to
node2. Using these measures also found that:

vi. Leaf-to-leaf alignments are more accurate than node-
to-leaf alignments, which are more accurate than node-to-
node alignments, with the exception of highly diverged
enhancers (figures 2E &2F).

Observations i and ii were consistent with our expecta-
tions. Although all four tools in this study use some form
of the Needleman-Wunsch algorithm, they each utilize
unique algorithmic features and scoring schemes, leading
to variation in their alignments and therefore alignment
accuracy under different evolutionary conditions (figure
2A). Both, the decrease in alignment accuracy with greater
divergence distance (figure 2A) as well as the increase in
alignment accuracy with the addition of transcription fac-
tor binding sites (figure 2B), are the expected outcome of

higher similarity and fewer indels leading to higher align-
ment accuracy (as we have previously reported for pair-
wise alignments [5]).

Our results on the relationship of alignment accuracy to
the number of species aligned (observations iii, iv and v)
are consistent with the hypothesis that the pairwise dis-
tance between the two most diverged species in a tree
effectively determines alignment accuracy. Across tools
and divergences, adding ingroup or outgroup species to a
pair of species of fixed divergence had an insignificant
effect on alignment accuracy (t-test, p > 0.05) (figure 2D
and leaf-to-leaf accuracy in 2E &2F). Brudno et al found
Mlagan alignments of human and fugu exons were
improved by 3% with the addition of mouse as an in-
group [65], which is consistent with the trend we
observed with Mlagan alignments improving with in-
group addition, but this trend was not found to be highly
significant at any divergence. Observations iii and iv, that
dividing a fixed total divergence up with more species
improves accuracy incrementally (figure 2C), may appear
to be in conflict with this hypothesis but are in fact con-
sistent. The increase in alignment accuracy with addi-
tional species dividing up a fixed total divergence is due to
a decrease in the pairwise divergence between the two
most diverged species, not the actual addition of species
(figures 2D, 2E &2F). Thus the span of the two most
diverged species, not the number of species in the align-
ment, appears to be the primary determinant of alignment
accuracy.

Finally, observation vi, that alignment accuracy varies
across branches in a tree, is quite unexpected. The progres-
sive alignment steps that these four tools use appear to be
biased toward aligning leaf sequences better than internal
nodes, where sub-alignments must be aligned (figure 2E).
This bias was found to be inconsistent for enhancer
sequences, for which alignment accuracy of node-to-node
and node-to-leaf branches actually were better than leaf-
to-leaf branches at high divergences (figure 2F). This vari-
ation is surprising given that the accuracy of the alignment
of a node to another node or sequence is conditioned on
the sequences below that node (in the tree) having been
aligned correctly (see Methods). These results suggest that
the step of aligning sub-alignments is harder than aligning
sequences, consistent with the idea that progressive align-
ment heuristics often lead to sub-optimal alignments
[68]. Variation of alignment accuracy across branches in a
tree has profound implications for phylogenetic analysis.

To understand the relationship of the observed variation
in alignment accuracy with phylogenetic analyses per-
formed using automated alignments, we explored the fol-
lowing two evolutionary inferences.
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Multiple Alignment AccuracyFigure 2
Multiple Alignment Accuracy. A: Alignment accuracy varies across tools and divergences. Mean four species alignment 
accuracy for each tool was measured as a function of total divergence distance. B: Alignment accuracy improves with the pres-
ence of transcription factor binding sites. Mean improved alignment accuracy of enhancers over background sequences for four 
species alignments was measured as a function of total divergence distance. C: Dividing a fixed total divergence up with more 
species improves alignment accuracy. Mean Mlagan alignment accuracy for two, three and four species trees was measured as a 
function of total divergence distance. D: Adding in-group species to a pair of species has no effect on the alignment accuracy of 
the pair. Mean improved alignment accuracy of three species alignments over two species alignments, where the divergence 
distance between Seq1 and Seq3 in the three species alignment was the same as the divergence distances between Seq1 and 
Seq2 in the two species alignment, was measured as a function of divergence distance. E & F: Alignment accuracy varies across 
branches in a tree and is best for leaf-to-leaf alignments and worst for node-to-node alignments, with the exception of highly 
diverged enhancers. Mean Clustalw alignment accuracy along branches in three and four species trees subtracted from mean 
two species alignment accuracy, where divergence along each branch is the same as the two species divergence, was measured 
in background sequences (E) and enhancers (F) as a function of divergence distance.
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Transcription factor binding site alignment
Using simulated true alignments and tool alignments of
enhancers containing conserved transcription factor bind-
ing sites we examined the accuracy of binding site align-
ment and its relationship with overall alignment accuracy.
We used two definitions of binding site alignment.
Aligned sites were classified as either perfectly aligned,
meaning every base in the binding site was aligned cor-
rectly across all species, or overlapping, meaning the bind-
ing sites across the species overlapped at at least one
position (similar to definitions in [34]).

We first looked to see if binding site alignment accuracy
varies across tools and divergences. Indeed, across tools
binding alignment accuracy is a decreasing function of
divergence distance. Figure 3A shows the fraction of sites
overlapping in four species enhancer alignments.

We next compared our two binding site alignment scores.
We were somewhat surprised to see how different the two
scores are, based on the intuition that conserved binding
sites should make for good anchors and large indels in
flanking sequences therefore ought to be the cause of
most alignment errors. Instead it appears that binding
sites are often still overlapping in an alignment even if
they are not perfectly aligned. Figure 3B shows the differ-
ence between our two scores in four species alignments.
The large difference between the two scores suggests that
evolved binding sites might not be strong anchors and
therefore alignment errors in regulatory regions may often
be subtle.

We next looked to see how binding site alignment accu-
racy is related to overall alignment accuracy. Across tools,
divergence distances and trees, binding site alignment
accuracy is highly correlated with overall alignment accu-
racy, however, binding site alignment accuracy is consist-
ently higher than overall alignment accuracy. Figure 3C
shows overlap binding site accuracy as a function of over-
all alignment accuracy for four species alignments. Similar
to overall alignment accuracy of enhancers (figure 2F),
binding site alignment accuracy also varies across
branches in trees (figure 3D).

Lastly, we looked at properties of enhancers and binding
sites to see how they are related to binding site alignment
accuracy. We expected that enhancers with a greater den-
sity of binding sites would align more easily. Indeed,
across tools, divergence distances and trees, binding site
alignment accuracy is strongly and significantly correlated
with the density of binding sites in an enhancer (figure 3E,
Spearman's rho = 0.92 p < 10-10). We also looked at the
length and average information content of binding sites to
see if longer or more highly specified sites tend to align
better. Across tools, divergence distances and trees, bind-

ing site alignment accuracy is correlated with binding site
length (figure 3F, Spearman's rho = 0.44 p < 0.3) and aver-
age information content (Spearman's rho = 0.40 p < 0.35)
but neither correlation is significant, likely because of the
small number of factors used in this study. Thus the
greater the density and the longer and more specified the
sites in an enhancer, the more likely the sites will be
aligned correctly.

Divergence estimation
Using simulated true alignments and tool alignments of
10 kb background noncoding sequences we investigated
the effects of alignment errors on divergence estimation.
Divergence distances were estimated from alignments
using the Baseml program from the PAML package [69]
(see Methods for run parameters). We used divergence
estimation error, instead of accuracy, so as to capture the
directionality of errors (overestimated or underesti-
mated). We defined it as the fractional difference between
the Baseml estimate and the true divergence used in the
simulation: (Estimate – True)/True.

We first checked to see if divergence estimates from the
simulated alignments are accurate. Indeed out to high
divergence distances, Baseml estimates are very close to
input divergences (figure 4).

We next looked to see if and how divergence estimation
accuracy varies across tools and divergences. Our expecta-
tion was that divergence estimation accuracy would stead-
ily decrease with divergence distance at a tool specific rate,
as alignment accuracy does. Instead we found estimated
divergences tend to be mostly accurate (or somewhat
overestimated) at short divergence distances but are
always underestimated at long divergence distances. Fig-
ure 4A shows divergence estimates from four species
alignments across tools and divergences. Figure 4B shows
the same data presented as divergence estimation error, as
a function of true divergence distance. Perhaps most strik-
ing is the asymptotic approach of estimates to tool specific
maxima. This result is consistent with Shabalina and Kon-
drashov's findings that the alignment of random
sequences results in a percent identity much greater than
the random expectation of the sum of the squared base
frequencies [70]. If diverging sequences evolve to a lower
identity than that of random sequences then alignment
tools treat them like they are random and produce an
alignment that has a fixed divergence. Indeed aligned ran-
dom sequences produce similar divergences as the
observed maximum divergences from our simulations
(data not shown). Interestingly, the two tools that have
the highest maximum divergence (Clustalw and Mlagan)
both overestimate divergences at short divergence dis-
tances while the two other tools do not. Finally, Tba, the
only local alignment tool in our analysis, stops returning
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Transcription Factor Binding Site Alignment AccuracyFigure 3
Transcription Factor Binding Site Alignment Accuracy. A: Binding site alignment accuracy varies across tools and 
divergences. Fraction of binding sites overlapping in four species alignments was measured as a function of total divergence dis-
tance. B: Binding sites are often still overlapping in alignments even when they are not perfectly aligned. Fraction of binding sites 
perfectly aligned in four species alignments subtracted from the fraction of binding sites overlapping in four species alignments 
was measured as a function of total divergence distance. C: Binding site alignment accuracy is highly correlated with overall 
alignment accuracy and is consistently higher. Fraction of binding sites overlapping in four species alignments was measured as 
a function of overall alignment accuracy. D: Binding site alignment accuracy varies across branches in a tree and is best for leaf-
to-leaf alignments and worst for node-to-node alignments. Fraction of binding sites overlapping along branches in three and 
four species trees subtracted from the fraction of binding sites overlapping in two species Clustalw alignments, where the 
divergence along each branch is the same, was measured as a function of divergence distance. E: Binding site alignment accuracy 
is positively correlated with binding site density in an enhancer. Fraction of binding sites overlapping in replicate four species 
Mlagan alignments of each of the 36 enhancers was measured as a function of the density of binding sites in the enhancer. F: 
Binding site alignment accuracy is positively correlated with binding site length. Fraction of binding sites overlapping in four spe-
cies Mlagan alignments for each of the eight transcription factors was measured as a function of the length of the transcription 
factors' binding sites.
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alignments before it reaches its maximum divergence,
indicating that the algorithm can avoid aligning random
alignments but therefore also cannot return weakly
informative alignments at large divergence distances.

Because divergence estimation accuracy appears to vary in
different ways than alignment accuracy, we looked
directly at their relationship. Figure 4C shows four species
divergence estimation error as a function of alignment
error. With the exception of Tba, which stops returning
alignments while alignment error is still small, tools reach
the point at which divergence estimates cease to increase
close to the point at which alignment accuracy reaches its
minimum. The accuracy of divergence estimates from
Mavid may be due to the fact that it requires a tree with
branch lengths and we provided the true divergences. The

accuracy of divergence estimates from the other three
tools is remarkable given the poor quality of the align-
ments at long divergence distances.

We last looked to see if divergence estimation accuracy
varies across branches in trees as alignment accuracy does.
Across tools, divergence estimates were most accurate for
leaf-to-leaf branches, less accurate for node-to-leaf
branches and least accurate for node-to-node branches.
Figure 4D shows the error in divergence estimates from
Mlagan alignments of leaf-to-leaf, node-to-leaf and node-
to-node branches in two, three and four species trees. Mla-
gan's tendency to overestimate divergence distances at
short divergence distances and to underestimate diver-
gence distances at long divergence distances is least pro-
nounced in leaf-to-leaf alignments and most pronounced

Divergence Distance EstimationFigure 4
Divergence Distance Estimation. Divergences estimated from tool alignments are overestimated at short divergence dis-
tances and underestimated at large divergence distances while divergences estimated from true simulated alignments are accu-
rate to large divergence distances. A: Mean divergence distance estimated from simulated alignments and tool alignments for 
four species trees was measured as a function of total true divergence distance. B: Mean divergence estimation error (Estimate 
– True/True) for four species trees was measured as a function of total true divergence distance. C: Divergence estimation 
error from tool alignments is not correlated with alignment error. Mean divergence estimation error for four species trees 
was measured as a function of mean alignment error. D: Divergence estimation error varies across branches in a tree and is 
best for leaf-to-leaf alignments and worst for node-to-node alignments. Mean divergence estimation error along branches of 
equal true divergence from two, three and four species Mlagan alignments was measured as a function of true divergence dis-
tance.
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in node-to-node alignments. The point at which diver-
gence distances cease to increase also appears to be at a
shorter divergence distance for node-to-node branches
than leaf-to-leaf branches, reflecting the lower alignment
accuracy of those branches. The variation in divergence
estimation accuracy across branches in a tree has signifi-
cant implications for phylogenetic analysis of DNA
sequences.

Discussion
Molecular evolutionary studies of noncoding DNA have
either relied on the intuition that closely related species
can be aligned well or have ignored alignment error all
together [1-4,9]. To gain perspective on how alignment
might impact evolutionary analysis, we investigated mul-
tiple alignment accuracy and its relationship with two
fundamental evolutionary inferences: transcription factor
binding site conservation and divergence estimation.

Because gold standards for base-level noncoding and reg-
ulatory DNA alignment accuracy do not exist, we devel-
oped a simulation platform called CisEvolver that can
evolve background noncoding DNA, transcription factor
binding site DNA or a mixture of the two (enhancers). We
implemented CisEvolver with features of background and
regulatory sequence evolution that are well modeled and
are present in most comparative systems. Certainly more
complicated evolutionary phenomena have been
observed, and in cases where modeling is successful,
ought be the subject of future studies. For instance, substi-
tution rates have been shown to vary across sequences and
have been modeled in various ways, most commonly
using a gamma distribution [71]. In our study we mod-
eled both substitution and indel rate variation using inter-
spersed transcription factor binding sites, but rates may
vary for additional reasons other than regulatory con-
straints, in which case a gamma distribution in our back-
ground model may be appropriate. Interestingly, a recent
study showed that using a gamma distribution in simula-
tions has no effect on Clustalw alignment accuracy when
comparing sequences with the same overall identity [6],
suggesting that our results are likely robust to rate varia-
tion. Compensatory substitutions (like those observed in
structural noncoding RNAs) [72-74], ancient and lineage
specific repetitive sequences (like those common in mam-
mals), inversions and rearrangements [75,76] could all be
incorporated into the CisEvolver platform for alignment
analysis. As models of the cis-regulatory code [77] and
binding site evolution [38,57] are developed, they too
should be tested for affects on alignment accuracy. Addi-
tionally, the trees we chose to study are idealistic, in that
they are ultrametric (leaves are equidistant from parent
nodes), and they contain relatively few species compared
to many real datasets. Trees with rate changes across many
lineages would likely present additional problems that

should be examined in future studies. A comprehensive
analysis of the influence of tree shapes on alignment
would be an interesting future direction (see [8] for an ini-
tial analysis). Despite the absence of these more compli-
cated or unexplored aspects of noncoding evolution in the
current study, our results suggest that even under these
simple and ideal circumstances numerous issues arise
from alignment error that ought to be qualitatively
informative for all systems.

Using alignments generated by CisEvolver we tested the
accuracy of alignments generated by four commonly used
genomic alignment tools. All tools were run using their
default parameter values (see Methods). It is quite possi-
ble that the accuracy of the alignments generated by some
of these tools is highly sensitive to parameter settings and
scoring schemes. In this study we focused on consistent
behavior across tools and also how variation influenced
inferences and were therefore not concerned with the rel-
ative performance of each tool. In order for users to opti-
mize the use of current tools and also in order for
designers of alignment tools to understand which algo-
rithmic innovations actually improve alignment accuracy
(beyond parameter settings), a systematic analysis of
parameters is needed. In this study, using just default
parameters, we found that the primary determinant of
multiple alignment accuracy is the pairwise divergence
distance between the two most diverged species in the
alignment (figure 2D). Although dividing up a given
divergence distance by more species improves accuracy
(figure 2C), this appears to be simply due to the decrease
in pairwise divergence separating the two most diverged
species. Although we found that adding additional species
(either in-groups or out-groups) to two species of a fixed
divergence distance had an insignificant and inconsistent
(across tools) impact on alignment accuracy (figure 2D),
a concurrent study found that Clustalw alignments are
most improved when an additional species is added at a
distance equal to one third the pairwise distance separat-
ing two other species [8] (which we note is the topology
we used in this study; see figure 1). Brudno et al also
found that adding mouse to human-fish alignments
improved Mlagan alignments by 3% [65]. If there is an
affect of adding an in-group, our results suggest that it is
weak and is not robust to alignment tool choice. Perhaps
our most striking finding is that the accuracy of align-
ments varies across branches in a tree such that they are
most accurate for alignments of sister taxa and least accu-
rate between internal nodes that align sub-alignments. As
we discuss below, this variation in accuracy causes varia-
tion in inferences across the tree, which could easily be
construed as lineage specific biological variation. Future
development of tools that minimize this distortion in
accuracy across branches in a tree will be extremely valua-
ble.
Page 9 of 14
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The first evolutionary inference we examined was the
measurement of the conservation of transcription factor
binding sites in regulatory regions. Studies have used con-
servation of binding sites as either a means of classifying
functional from spurious predictions [21-33] or for the
purposes of understanding their rates of change, or turno-
ver [35-42]. Here we wanted to understand how far out
such estimates might be accurate, what approaches might
be taken to improve such estimates and also which fea-
tures of regulatory regions might affect such estimates. We
found that binding sites are usually aligned better than
their surrounding sequences (figures 2B &3C) but are still
misaligned starting at very short divergence distances (fig-
ure 3A). For instance, given the approximate divergence of
Drosophila pseudoobscura from Drosophila melanogaster, at
1.79 substitutions per site [78], according to our results,
only about 40% of truly conserved binding sites should
even be overlapping in alignments. Unless the rate of
binding site turnover is high enough such that the
number of sites that have turned over is much larger than
the 60% of truly conserved sites that have been mis-
aligned, its unlikely that such a comparison would be use-
ful for studying binding site evolution. If 40% binding site
conservation, however, is higher than what might be
expected in non-functional regions, then comparing these
species might still be useful for predicting functional reg-
ulatory regions. Our finding that binding sites are often
still overlapping in alignments even if they are not per-
fectly aligned (figure 3B) suggests that binding sites are
not always strong alignment anchors, that small indels
could lead to small alignment errors and that methods for
identifying conserved binding sites that do not rely on
perfect alignments would have greater sensitivity
[21,28,79] (the specificity of such methods, however,
would need to be explored to understand their predictive
power). Finally we found that the higher the density of
sites in an enhancer, the higher the alignment accuracy of
the binding sites within, presumably due to the overall
higher constraint and suppression of indels. Bacterial and
yeast regulatory regions, for instance, are not understood
to contain such high-density arrays of binding sites as
metazoans [80,81] and would therefore be expected to
align more poorly, all else being equal. Although we also
found that longer binding and more highly specified sites
are easier to align, this requires further investigation with
a larger panel of transcription factors. The variance in
alignment accuracy introduced by such regulatory
sequence properties is important to consider before deter-
mining the expected error from simulations or before
interpreting an evolutionary comparison across regulatory
regions.

The second inference we considered was divergence dis-
tance estimation. We were impressed that our estimates
using PAML's Baseml program on the true alignments

generated in our simulations were highly accurate out to
rather high divergences, suggesting that saturation does
not lead to inaccuracies at short divergence distances, at
least when the right model is used (figure 4A &4B).
Because of the accuracy of the divergence inference step,
we were able to look directly at the contribution of align-
ment error to divergence estimation. Although the ten-
dency of two of the tools to overestimate divergences at
short divergence distances is noteworthy (as was observed
for Clustalw in [8]), most striking is the behavior that all
tools reach a unique divergence distance at which diver-
gence estimates cease to increase (figures 4A &4B) (this
underestimate was also observed for Clustalw in [8]). This
point of maximum divergence corresponded with the
point at which tools reached their minimum alignment
accuracy or where they were essentially randomly aligned
(figure 4C). Shabalina and Kondrashov previously
reported that unrelated sequences produce alignments
that have a greater percent identity than would be theoret-
ically predicted from base composition, suggesting that
alignment tools add gaps to create more matches and
fewer mismatches in order to maximize their scores [70].
The "twilight zone" (the point where alignments become
random) [82] is therefore not 25% identity but instead is
a much shorter divergence (or higher identity) which var-
ies across alignment tools. For instance, pairwise align-
ments generated by Mavid reach the point where
divergence estimates cease to increase at about 0.5 substi-
tutions per site, which is approximately the divergence
estimated for human and mouse, suggesting that fast
evolving human or mouse sequences would on average
not be detected as such from Mavid alignments. It is worth
noting that Tba, stops returning alignments before it
reaches the point where divergence estimates cease to
increase, suggesting that the scoring scheme Tba uses to
filter its alignments can avoid producing random align-
ments but also that it might fail to return an alignment
with some remaining phylogenetic signal.

Our findings that overall alignment accuracy, binding site
alignment accuracy and divergence estimation accuracy
vary greatly across branches in a tree have profound impli-
cations for phylogenetic research of noncoding DNA. All
four of the tools we examined exhibit systematic biases
toward higher accuracy along branches connecting sister
taxa relative to branches connecting internal nodes (fig-
ures 2E, 2F, 3D &4D). Consider the example of studying
binding site turnover rates relative to substitution rates in
human, mouse and rat alignments. Even if these rates
were constant across the tree, binding site turnover might
be detected as higher along the human branch because of
increased alignment error along the longer node-to-leaf
branch and substitution rates might be underestimated
along the human branch because it is longer than an
alignment tool's maximum divergence. Theses two biases
Page 10 of 14
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combined would then cause turnover events per substitu-
tion to be even more distorted along the human branch.
These results strongly suggest that either new alignment
tools that minimize this bias or new phylogenetic meth-
ods that control for this bias need to be developed.

Conclusion
Errors in the alignment of noncoding DNA are systematic
phenomena that affect evolutionary inferences, decreas-
ing accuracy and biasing results. In order to use the rich
diversity of variation in more diverged sequences, new
alignment and phylogenetic methods need to be devel-
oped to reduce and control for errors in automated align-
ment.

Methods
CisEvolver
CisEvolver was written in Perl. It is available for download
[59].

Trees
For both the divergence estimation and binding site con-
servation estimation simulations, each divergence dis-
tance tested was transformed into a Newick formatted
tree. Figure 1 shows how divergences were distributed
across trees.

Divergence simulations
For the divergence estimation simulations, 100 simula-
tions were run for each divergence distance. For each sim-
ulation, a 10 kb ancestral sequence was randomly
generated from the D. melangaster mono-nulceotide base
frequencies (60/40 AT/CG). The 10 kb sequences were
evolved from the root node of the tree down the branches
to leaves using a substitution and indel model. Substitu-
tions occurred according to the HKY85 substitution
model [54], using the D. melanogaster mono-nucleotide
base frequencies and kappa set to 2.0 as has been
observed in Drosophila [83]. Indel events occurred accord-
ing to a Poisson indel event model:

pindel = 1 - e-Rk

where R is the relative rate of indels to substitutions and k
is the length of the branch. In Drosophila indels have been
found to occur approximately 10% the rate of substitu-
tions so we used R = 0.1 [84,85]. Indel lengths were deter-
mined by a frequency distribution derived from D.
melanogaster indel polymorphisms with a maximum of 58
bp [55]. Insertions and deletions were treated identically.

Cis-regulatory sequences
Thirty-six experimentally characterized cis-regulatory
regions that have been found to drive expression patterns
in reporter assays recapitulating some or all of the expres-

sion pattern of an adjacent gene were collected from two
recent papers on anterior/posterior patterning in D. mela-
nogaster [26,60]. The sequences were mapped to release
4.0 of D. melanogaster using BLAT [86]. A GFF file with the
enhancer coordinates is available in additional file 1:
Enhancers.gff.

Transcription factor binding sites
The 36 cis-regulatory regions used in the study have been
reported to be bound or predicted to be bound by some
combination of the following factors: Bicoid [61], Caudal
[61], Giant [62], Hunchback [62], Knirps [62], Kruppel
[62], Tailless [62] and Torso-response element [60]. Posi-
tion weight matrices (PWMs) were either taken from pub-
lished resources [60,61] or were generated from published
footprints [62] using MEME [87] (described at [88]).
Matrices are available in additional file 2: Matrices.txt.

For each of the 36 cis-regulatory regions, PASTER [89] was
used to find sites with a p-value less than 10-3 for each of
the eight PWMs. If sites were overlapping one was ran-
domly chosen and the others were thrown out.

Transcription factor binding site conservation simulations
For the binding site conservation simulations, 25 repli-
cates for each of the 36 cis-regulatory regions were evolved
to each of the divergence distances. Sequences were
evolved from the root down the branches of each tree
using either a background or binding site mutation
model. Non-binding site sequences in the enhancers were
evolved according the HKY85 and indel models described
above. Binding sites were evolved according to the HB98
substitution model [56]. We have previously shown that
there is position-specific variation in substitution rates
across functional binding sites and that the HB98 substi-
tution model accurately predicts the relationship between
the degeneracy of positions in a PWM and the position
specific substitution rate across binding sites [28,57]. The
rate of change from residue a to b at position i in the bind-
ing site is given by:

where Q is the background substitution model (HKY85)
and f is the PWM for the factor. Indel events were not per-
mitted in binding sites and deletions from background
sequences were not allowed to extend into binding sites.
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Alignments
Alignments were performed using default parameter val-
ues for each of the following tools: Clustalw [63], Mavid
v0.9 [64], Mlagan v1.2 [65] and Blastz/Tba [7,66,67].

Alignment accuracy
Alignment accuracy was defined as

where CSU is the count of the ungapped columns in the
simulated alignment and CTSU is the count of the
ungapped columns in the simulated alignment that are
aligned identically in the tool alignment. This measure is
the same as "sensitivity" defined in [5].

Branch specific alignment accuracy was calculated simi-
larly except that CSU was the count of ungapped columns
for which the alignment was joining either sequences or
correctly aligned sub-alignments and CTSU was the count
of such columns in the simulated alignment that were
aligned identically in the tool alignment. For instance, in
a four species alignment, the node-to-node alignment
accuracy was only based on the columns for which Seq1
and Seq2 were aligned correctly to each other and Seq3
and Seq4 were aligned correctly to each other (figure 1).
Similarly, in a three species alignment, the node-to-leaf
alignment accuracy was only based on the columns for
which Seq1 and Seq2 were aligned correctly to each other.
The motivation for this was to consider only the contribu-
tion to alignment accuracy a given branch contributes.

A script written in PERL that can calculate these measures
is available for download [59].

Binding site alignment measures
Binding site alignment was evaluated based on two meas-
ures. Sites that had the same start and stop position in
each sequence in an alignment were considered to be per-
fectly aligned. Sites that were overlapping by at least one
base in each of the sequence in an alignment were consid-
ered to be overlapping. The fraction of sites that were per-
fectly aligned and the fraction of sites overlapping in
alignments across all cis-regulatory regions and all repli-
cates are reported. The Pearson correlation between the
density of binding sites in cis-regulatory regions and each
measure as well as the correlation between the length of
binding sites for each factor and each measure were calcu-
lated using the R statistics package[90].

Divergence estimation
Divergence estimates were calculated using the baseml
program from the PAML package v3.14 [69]. Baseml was
run with the HKY85 model, estimating kappa with an ini-

tial value of 2, fixed alpha at infinity, no clock and esti-
mating the equilibrium base frequencies from the
observed averages.
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